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The heat-transfer problem for plane Couette-Poiseuille flows is solved by a Galerkin’s 
procedure for which the system of representing functions has a close relation to the 
governing equation. A coordinate transformation brings the principal part of the 
partial differential equation into a standard form, for which the eigenfunctions can be 
determined once and for all. The resulting system of ordinary differential equations 
has strong diagonal dominance and is integrated by a predictor corrector method for stiff 
equations. The accuracy of the method is examined by a comparison of the eigen- 
functions of Galerkin’s operator with those of the exact problem. The dimensionless 
temperature field has been computed for various pressure gradients. 

1. INTRODUCTION 

A steady laminar incompressible plane Couette-Poiseuille flow in which heat 
conduction in the flow direction and viscous dissipation are-negligible is governed 
by the following equation for the dimensionless temperature T(x, y): 

fh ~wvw = avw, 0 < y < 1.0. (1) 

Heref(or, y) is a dimensionless velocity which is determined from the momentum 
equation. One finds 

~(CGY) = S[y + 2ay(l -Y)I. (2) 

* This work was carried out while C.C.H. was a Visiting Research Associate to the Ohio State 
University Research Foundation. 
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The parameter 01 is related to the pressure gradient. The definition of tx and x 
used here agrees with that of [I]. The present approach is not restricted to the 
specific form off(ol, y) defined above. In order for the problem to be well posed 
f(a, u) must be nonnegative. [A zero off(cu, y) at y = 0 and y = 1 is admissible.] 
The following boundary and initial conditions will be imposed: 

W-G 0) = 7&L m, 1) = Tl(X), (3) 

WI, v) = Ti(V>. (4) 

To obtain solutions of (1) under general boundary conditions it is necessary 
to employ a numerical method. In [2] an equation of this type has been used as 
a model in the study of numerical methods for the solution of the boundary layer 
equation. The present paper is an outgrowth of these investigations. The under- 
lying idea will be described in Sections 2 and 3. The method can be interpreted 
as a modification of the classical approach used in [I]. It is advantageous if the 
problem must be solved for a number of functionsf(cu, v). 

2. SELECTION OF APPROXIMATING FUNCTIONS 

A number of methods for solving the problem (l)-(4) can be considered as 
special forms of Galerkin’s procedure. Let jJy), k = I, 2,..., be a complete set 
of known functions and let 

(5) 

where fi(x, ?/> is chosen to satisfy the boundary conditions. One is then led to 
solve the system of equations 

where s>(x) are expressed in terms of fi(x, v) and the approximating functions 
k,(y). Equation (6) can be put in the vector form 

dyjdx t Cy = s, (7) 

where C is a constant matrix with elements cjk . 
The classical method of separation of variables can be considered as a variant 

of Galerkin’s procedure for which the system of functions 6 possesses a close 
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relation to the partial-differential Eq. (1). The functions g are obtained by the 
product hypothesis 

Wx, L‘) = exp(-W g( ,@. (8) 

One is led to the eigenvalue problem 

&+Y2 + A!(% Yk = 0, g(0) = g(l) = 0. (9) 

which has to be solved repeatedly for different values of 01 [l]. In analogy to (5) 
we write 

w, v> = c AC(x) gdJ4 + .m, Y). (10) 

This leads to a system of uncoupled equations 

dfij/dx + hjflj = rj(x). (11) 

Let /l be a diagonal matrix whose elements are given by hj . Then the vector form 
of (11) is 

dpjdx + A@ = r. (12) 

If in (7) a product hypothesis analogous to (8), that is, 

y(x) = exp( -i,x) zk , (13) 

is made, then one obtains an eigenvalue problem for the infinite matrix C. Denote 
by fi, the eigenvalues and by zk the eigenvectors; let z~,~& be the m-th component 
of zg . The two hypotheses, (5) and (lo), then give the same solution and 

gk(Y) = x zk2j(V). (14) 

Of course, this is true only if one considers infinite matrices. If truncated matrices 
are considered, then their eigenvalues will differ somewhat from the exact ones; 
very little for small h, , more for larger h, . Naturally if C is truncated to an N 
by N matrix, then only N eigenvalues will be found. It can be expected that the 
k-th eigenvalue of the truncated and of the complete matrix have about the same 
magnitude. This has an important consequence for the numerical approach. All 
X, are positive, therefore the system is stable. But one must differentiate between 
the stability of the system and the stability of the integration procedure. The 
stability of the integration procedures usually used (e.g., Runge-Kutta or one of 
the customary predictor-corrector methods) depends upon the largest eigenvalue 
of the matrix C. If large eigenvalues are present then the stability of the integration 
procedure requires the use of a small step size. This is true even if the solution 
itself has practically no components which correspond to the large eigenvalues. 
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Systems with large eigenvalues are called stiff. Every integration procedure for the 
problem (l)-(4) must cope with its stiffness in some fashion. 

Several ideas have been advanced for integrating stiff systems with a step size 
which is not too small. One can, for instance, bring the system into its diagonal 
form. In the present context this approach is practically the same as separation 
of variables. Here the individual equations can be solved by quadratures. The 
effect of large eigenvalues is present but it appears in manageable form; it manifests 
itself in the rapid changes of some of the integrands. If the integration is carried 
out with usual techniques, e.g., the trapezoidal rule or Simpson’s rule, then small 
steps must again be used in order to retain accuracy; large steps are admissible 
if one anticipates the changes of the integrands by an analytic technique. The 
drawback of this approach lies in the necessity to determine the eigenvectors of 
the matrix C, or (preferably, in the present case), the eigenfunctions g, Other 
approaches for which larger integration steps are admissible are based on implicit 
integration methods. Implicit methods require the solution of linear systems of 
equations for each integration step, but they are quite effective. 

In [3] an integration procedure for stiff equations has been developed which is 
advantageous, if all large elements of C, that is, those elements by which the 
stiffness expresses itself, occur in the main diagonal. For such matrices the stiff 
components are only weakly coupled with the rest of the system and the integration 
can be carried out by a predictor-corrector method with automatic step control. 
A form of C which has this property is obtained, if the asymptotic representations 
of the eigenfunctions g, are used as the approximating functions jk of Galerkin’s 
method. 

3. METHOD OF SOLUTION 

We carry out a transformation which is suggested by the derivation of Langer’s 
asymptotic representations for the eigenfunctions g, [4]. This transformation is 
applied to the original partial-differential Eq. (I), rather than to the equation for 
the eigenfunctions. We want the principal part of the governing equation to 
assume a standard form; this involves a transformation of the y coordinate and 
a trivial change of the scale of the x coordinate. We set 

nx, 4’) = 4.Y) v%? rim> f = Kx. (15) 

The functions h(y) and q(u) must be determined in a suitable manner. Substituting 
(15) into (1) and denoting derivatives with respect to y by primes we find after 
division by hT12 
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A normalized form of the equation is obtained by postulating that Kfi(~‘)~ be 
some standard function of 7. We restrict ourselves to the case where the only 
zero off(ol, y) occurs at y = 0 and choose for this standard form 

WI% .JMr’)21 = 77 

with the additional requirement that 7 = 1 for y = 1. We then find 

Setting the coefficient of the derivative c&, to zero, one finds 

h(y) = (7’)y2. 

The coefficient of $J in (16) is then given by 

(19) 

q(7) = l h” __ _ = (q')-"[g(q)" - &jqfl']* 

(7'12 11 
m9 

For y = 0, h(y) and q(7) are regular functions, but this is not immediately obvious 
from (19) and (20). Formulas for computing h and q in which differences of large 
numbers are not encountered, even for very small values of y, are derived in the 
Appendix. 

We now have to deal with the differential equation 

with the associated boundary and initial conditions 

d(5,O) = +ots> = ~oc4mw), W? 1) = 5ML3 = ~lMfNl4l), (22) 

+co, 7) = A(7) = ~i(Y(7))/4Y(7)). (23) 

For Galerkin’s procedure we use approximating functions ek defined by the equa- 
tion 

d2e/d72 + p7e = 0, e(0) = e(1) = 0. (24) 

They are asymptotic representations for the functions gk defined by (9). For the 
functions ek one has orthonormality conditions of the form 

s 

1 

7ed7) d7> d7 = hk . (25) 
0 

The advantage of this procedure lies in the fact, that one can determine the approxi- 
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mate eigenfunctions ek once and for all; they are independent of the functionsf. 
Of course, the computation of the functions q(y), h(y), and q(y) requires some 
additional work, but in comparison with the determination of a sufficient number 
of eigenfunctions and eigenvalues for each f this is a minor task. 

Following Galerkin’s procedure we now write 

Remark. Simpler equations might have been obtained by the hypothesis 

for T = y and T = 1 - y satisfies the original differential equation. If I#” and CJ$ 
are constant, then the inhomogeneous terms would vanish entirely. 

Substituting (26) into (21) and using (24) and (25) one is led to the system of 
equations written in the vector form 

duldf + MY = AY + W), (27) 

where M is a diagonal matrix with elements pj defined by (24); the elements of 
the matrix A and the components of the vector b are 

J’ 
1 

Aj, = drl) ej(g) e.d$ ds 
0 

(28) 

The initial values for the components of the vector y are given by 

The coefficients Aj, arise from the function q(v). This function is bounded and 
the eigenfunctions ej and e, are bounded (because of the conditions of orthogonal- 
ity). Therefore the elements Aj, are bounded. In contrast some of the values pk 
will be large, unless one limits the number of eigenfunctions rather severely. 
Thus, (27) constitutes a system for which the method of [3] is advantageous. 
Incidently, if the matrix A4 is not dominant (perhaps if the elements Aj, are large), 
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the method can still be carried out, the accuracy control will then lead to small 
integration steps. In no case will the method of [3] have a detrimental effect. 

Our transformation leads in a natural manner to the asymptotic representations 
of the eigenfunctions. The prerequisite for the application of [3] is diagonal 
dominance in the governing matrix. This goal can also be achieved if one choose 
h(y) = 1. One is then led to the equation 

For higher eigenfunction the term P(I%#I/+) will be larger than the term q$ of (21) 
(because of the differentiation of +), but this fact need not be detrimental to the 
integration process. By the hypothesis 

(32) 

we are now led to the equations in vector form 

d?/df + A4? = & + f&J) (33) 

in which the elements of A^ and 6 are 

(34) 

7) ej dq t- T&3 1’ Pej 4 
‘0 

(35) 

The initial values for (33) are given by 

4. SOME REMARKS ABOUT THE INTEGRATION METHOD 

The special integration method to which we have referred above is analyzed 
in detail in [3]. The important feature is the representation of the right-hand side 
of (27) by a polynomial of a given degree (the program has been written for 
degree 4). The effect of the matrix M is taken into account analytically. It is then 



GALERKIN METHOD FOR HEAT TRANSFER 77 

possible to carry out the integration by a predictor-corrector scheme. If the 
matrix M on the left is incorporated into the matrix A on the right or if M =- 0, 
then one obtains the customary predictor-corrector schemes; if A = 0 then one 
obtains the analytic solutions and the method is stable for any integration step. 
Therefore one expects to have stability for a fairly large integration step if A is 
small in comparison to M. A check on the accuracy, i.e., on the validity of the 
assumption that the right-hand sides can be approximated by polynomials, is 
made by comparing the predicted and the corrected values. This check is used 
for interval control. The numerical results are based on the accuracy of lO-4 for 
the truncation error in the prediction-correction phase. 

5. DISCUSSION OF THE METHOD 

Any numerical solution will contain certain errors. If we use a development 
in terms of eigenfunctions, they are caused by the inaccuracies which arise in the 
representation of the initial conditions and possibly of inhomogeneous terms by 
a finite number of terms of their eigenfunction expansion. These are the only 
errors, besides rounding errors; the operator which gives the homogeneous part 
of the differential equation is left unchanged. 

In Galerkin’s method this operator will be modified, for the procedure is 
limited to a finite number of terms. The relation between the exact and the approxi- 
mate operators can be analyzed by a comparison of their eigenfunctions and 
eigenvalues. We preface this comparison by some general remarks. The deviations 
of the asymptotic representations from the actual eigenfunctions depend upon the 
closeness of the function ~(cY, y) to the standard function (in our case 7) which 
replaces it [see (21)]. If these functions are too different, then q will be large and 
h will vary strongly. But if q is large, then ,LL must be very large, otherwise q cannot 
be neglected in comparison to pv. This observation is of course borne out by 
the error estimate which is made in the rigorous treatment of asymptotic represen- 
tations. If f(a, .Y) has a zero of the first order then the standard function which 
takes its place must have a zero at the corresponding point, otherwise h and q 
will be infinite at this point. The standard function 71 of (21) takes into account 
the zero of f(ol, v) which occurs for J’ = 0, but it does not allow for a second 
zero which would be encountered in a Poiseuille flow. If f(a, 4~) comes close to 
a second zero, as happens for large values of 01, then q assumes extremely large 
values, and the asumptotic approximations become unreliable. The functions 
on 9, 11, q, and P for different values of 01 are shown in Figs. l-4. 

The product hypothesis (13) leads to the eigenvalue problem 

(C - &I) Zk = 0, (37) 
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where C = A4 - A for (27), I is the unit matrix and zk is a vector with the compo- 
nents zk,l , =k,2 ,..., z~,~. The eigenfunctions pertaining to this operator are 

‘h(Y) = h(Y) f =k,jej(~(Y)). 
j=l 

I 

Y 

0 0.5 

77(Y 1 

I 

:/ 

FIG. I. The function v(y) for different a. 

2- 

a= IO0 

.1-m 
0 0.5 1.0 

(38) 

T 

FIG. 2. The function h(v) for different a. 
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FIG. 3. The function q(r)) for different (Y. 
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FIG. 4. The function P(T) for different a. 
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The accuracy of the procedure is determined by the accuracy with which the 
eigenfunctions 2, and the eigenvalues & approximate the corresponding quantities 
of the exact operator. The same comparison can be carried out for the case where 
h = 1, i.e., C = A4 - A. 

In our computations we have chosen N = 10. For a number of values 01, the 
eigenvalues and eigenvectors for the matrices in (27) and in (33) have been deter- 
mined. Table I lists the exact eigenvalues and different approximations for N : I 
and 10. Further computations for 01 = 25 and 01 = 50 have shown that the differ- 
ence between the eigenvalues obtained with h(y) = (~‘)-l/~ and with h = 1 is 
never more than 0.3 %. 

TABLE 1 

The Eigenvalues Obtained from the Different Methods 

Mode 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

a: = 1.0 

Airy’s Eq. (24) h = (‘I’)-‘/” h(y) = 1.0 Exact 

18.95 18.38 18.38 18.38 
81.88 81.21 81.21 81.21 

189.2 188.5 188.5 188.5 
341.0 340.2 340.2 340.3 
537.1 536.4 536.4 536.4 
777.7 777.0 777.0 

1063. 1062. 1062. 
1392. 1391. 1391. 
1766. 1765. 1765. 
2185. 2183. 2182. 2183. 

a = 10. 

h = (7)‘)-1’2 h(y) = 1.0 Exact 
__- 

16.53 16.52 16.51 
77.47 77.45 77.43 

183.3 183.2 183.2 
333.8 333.7 333.7 
528.9 528.8 528.8 
768.6 768.3 

1053. 1052. 
1382. 1381. 
1755. 1753. 
2173. 2168. 2172. 

For 01 = 10 the difference between the 5th and the lo-th eigenfunctions and 
various approximations is shown in Figs. 5 and 6. The best results are obtained 
from (37) and (38) with h = (q’)- 1/2. For the lower modes the approximations 
with h = 1 are nearly as good, and both are better than the asymptotic approxi- 
mation. For higher modes the approximation with h = 1 deteriorates. The 
accuracy of the approximation decreases with increasing c11. Figure 7 gives the 
same information for the derivatives. In view of the pronounced peak that occurs 
in q(y) the approximations are surprisingly good. The function f(y) is shown in 
Fig. 8; it deviates very considerably from the linear function which takes its 
place in (21). The requirement that the operators of the approximating equations 
should be “close” to that of the exact equation is certainly not very stringent. 
From these discussions we conclude that 01 = 10 is a safe, perhaps even conserva- 
tive, limit for the application of the present procedure. 

The procedure of [3] is stable for fairly large integration steps if, in those equa- 
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-‘/2 
__ h(y)=($) 

t 

---- h(y)=10 

01 
I 

-.- Asymptotic I 

gdw = exact eigenfunction - opprox eigenfunction 

max. amplitude of the exact eigenfunction 

-O.l- 

FIG. 5. Different approximations to the fifth eigenfunction for a: = 10. 

d 

--- h(y)&10 
II 

0.1 ---Asymptotic 

exact eigenfunciion -approx eigenfunctmn -0.k gdi7$ -__ 
max amplitude of the exact eigenfunction 

FIG. 6. Different approximations to the tenth eigenfunction for a: = 10. 

tions for which pcLj is large, the matrix elements Aj, or & are small in comparison 
to the pj . For the systems (27) and (33) these matrix elements are indeed small. 
Even for cz = 100 the worst value of Y& is less than 17 % of the corresponding pLj 
and this happens for a low value of pj . 

At the start of the integration procedure a step size 1O-3 was chosen. This is 
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---- h(y)=lC 

FIG. 7. Different approximations to the derivative of the fifth and tenth eigenfunction for 
01 = 10. 

0.6 

Y 

FIG. 8. Velocity profile,f(ar, y), for pi = 10. 

larger than the stability limit for the ordinary predictor-corrector method. For 
a largest eigenvalue of about 2200, this limit would be 4.4 x 10-4. But for the 
procedure of [3] the stability limits are much higher, therefore the provisions 
of the program for automatic step control have increased the step size a number 
of times. At .$ = 1 we obtained a step of 3.2 x 1O-2 or sometimes 6.4 x 10e2. 
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If the computation would have been carried out further, larger step sizes would 
probably have been used. The step size seems to be limited by accuracy require- 
ments rather than stability requirements. (Actually the program has no stability 
check. But instabilities lead to a deterioration of the accuracy, and then the step 
size is reduced because of the accuracy requirements. If the step size is close to 
the stability limit then a program with automatic step control will periodically 
change the step size from a stable value to an unstable value and back.) 

6. RESULTS 

As a first application we have considered the problem solved by Hudson and 
Bankoff [I] by means of an eigenfunction development. The boundary conditions 
are 

T,,(x) = T,(x) = 0, Ti(Y) = 1.0. (39) 

0 0.5 1.0 

Tky) 

FIG. 9. Temperature profiles at x = 4.0. 
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In these examples no inhomogeneous term appears in the differential equation. 
Since the present method gives excellent representations for the eigenfunctions 
and eigenvalues it is not surprising that there is excellent agreement between our 
results and the curves of [I]. In Fig. 9 temperature profiles at x = 4 for a number 
of values of cy are shown. One recognizes the influence of 01 on the thermal entrance 
length. For a < 1 the temperatures at x = 4 are practically zero. 

In a second set of examples we assumed that the temperature at the upper 
plate differs from that of the lower plate, i.e., we impose as boundary conditions 

T”(X) = 0, Tl(X) = 1.0, T,(y) = 1.0. (40) 

As we mentioned above, the expression T = y satisfies the inhomogeneous 
boundary conditions and the exact partial-differential equation. The rest of the 
problem is therefore identical with the previous example except for the initial 
temperature distribution. However, our computations have been carried out with 
the hypothesis (26) and then inhomogeneous terms appear. They are different 
for the case h = 1 and the case h f const. For this reason differences in the 
solution especially for large values of 01 are encountered. However, for small 
values of t results of the two methods agree rather well; they are within 2 % 
accuracy even for ai = 100 at x = 2.0. For Couette flow, OL = 0, the results given 
in Fig. 10 agree with those presented graphically in [5], as they should for in this 
case the methods are the same. Temperature profiles at different stations x for 
(Y = 1, 5, and 10 are shown in Figs. 11-13. Figure 14 shows temperature profiles 
for different values of cy. One recognizes again the influence of N on the thermal 
entrance length. 

Tky) ‘T(x.Y) 

FIG. 10. Temperature profiles for = 0. FIG. 11. Temperature profiles for oi = 1.0. 
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Y 

0.4 
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FIG. 12. Temperature profiles for CL= 5. 
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0 05 1.0 

FIG. 13. Temperature profiles for a = 10. 

T(x.y) 

FIG. 14. Temperature profiles at x = 2.0. 
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For large values of .$ where the initial condition is not important the temperature 
distribution should be given by T = y. We found that the solutions with h = 1.0 
are very satisfactory even when (Y = 100, while the solutions with h = (7’)-liz 
show discrepancies for large values of oz. These errors are introduced by the 
approximation of the inhomogeneous terms; the inhomogeneous term considered 
as a function of y is much more peaked if we use the method with h = (q’)-1/2 
than if h = 1.0. The shortcoming which expresses itself by these inaccuracies 
should not be ascribed to the method, but to the inadequacy of the hypothesis (26). 
Inadvertently this hypothesis uses a function for the representation of the boundary 
conditions for which a development with respect to g, or Jk converges very poorly. 
If other representations are used, for instance, the function T = y mentioned 
above, then one would obtain very satisfactory results. 

Finally we would like to point out that the present analysis can as well be 
applied to more complicated problems such as the heat transfer problem with 
viscous dissipation [that is the case when Eq. (1) involves a term of known function 
of y] and incompressible boundary-layer flow problems. 

APPENDIX: FORMULAS FOR h(y) AND q(y) 

Differentiating (18) one obtains 

or 

with 

7’ = (2/3)(~04 

u1 = 1 f llz dy, s ul’ = fllz. 

C-4.1) 

64.2) 

Assume that f(y) has the form 

f(Y) = %Y + a2y2 + w3 + ‘.. , a, # 0. 63) 

Certain expressions related to f are difficult to compute for small values of y, 
because of singularities which occur in the analytic expressions. We want to 
derive formulas where this difficulty does not occur. One has 

241 = O( y3/2). 

The integration involved in the definition of u1 can be carried out numerically 
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without a loss of relative accuracy. It follows that no difficulties are encountered 
in the evaluation of q’ and h. 

The expression (20) for q(y) can be written as 

4(Y) = (17’)Y [; (fi’ - ; $ ($1. (A.41 

We derive expressions for the evaluation of the individual terms in the bracket. 
From (A.l) by logarithmic differentiation one finds 

Hence using the definition of u1 , (A.2), the above expression becomes 

(A.9 

The individual terms on the right side of this equation are O(y-l) (for small y) 
while the entire expression is O(1). We try to split off the singular parts by a 
systematic procedure. To do this for the first term on the right consider 

yf’ -f = yf’ - l:f’dy. 

Next by integration by part 

with 

Yf’ -f = 4 

Then it follows 

Liz = 
i 

‘yff”dy = O(y2). 
0 

f_I_ - 1 = u2 = O(l). 
f Y Yf 

64.6) 

64.7) 

In this form the singular part off ‘/f is displayed analytically. The essence of the 
procedure is seen more clearly if one deals with the second term in (A.5). The 
power series development suggests that 

Ul’ 31 ----= 
% 2Y 

O(1). 



with 

Hence 
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We consider accordingly 

= vf 3 l/2 - ~ 2 
ii 1 

' f I" ),1/Z d,. 

'0 
7 

By logarithmic differentiation one has 

.YU,’ 
3 - zul = ; 1: yfl:2 ($- 

Next, by use of (A.7) one obtains 

.I’u,’ - (3/I) u1 = U/2) u3 

u2 = ' u2 d-112 dy = O( yW). 
0 

Ul’ 31 12.43 ----_ -- 
Ml 2Y 2 YUl 

= O(l). 

Substituting (A.7) and (A.9) into (A.5) one finds 

Starting from (A.lO) one finds by the same technique 

with 

s 

II 
ua = o~2f-d~. ~5 = j" 1 (u,f-‘12 - +~~~f-3/~) dy. 

(‘4.8) 

(A.9 

(A.lO) 

(A.1 1) 

(A.12) 
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